We present a simple and scalable algorithm for clustering tens of millions of phrases and use the resulting clusters as features in discriminative classifiers. To demonstrate the power and generality of this approach, we apply the method in two very different applications: named entity recognition and query classification. Our results show that phrase clusters offer significant improvements over word clusters. Our NER system achieves the best current result on the widely used CoNLL benchmark. Our query classifier is on par with the best system in KDDCUP 2005 without resorting to labor intensive knowledge engineering efforts.
CITATION STYLE
Lin, D., & Wu, X. (2009). Phrase Clustering for Discriminative Learning. In ACL-IJCNLP 2009 - Joint Conf. of the 47th Annual Meeting of the Association for Computational Linguistics and 4th Int. Joint Conf. on Natural Language Processing of the AFNLP, Proceedings of the Conf. (pp. 1030–1038). Association for Computational Linguistics (ACL). https://doi.org/10.3115/1690219.1690290
Mendeley helps you to discover research relevant for your work.