Semantic multi-classifier systems identify predictive processes in heart failure models across species

1Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Genetic model organisms have the potential of removing blind spots from the underlying gene regulatory networks of human diseases. Allowing analyses under experimental conditions they complement the insights gained from observational data. An inevitable requirement for a successful trans-species transfer is an abstract but precise high-level characterization of experimental findings. In this work, we provide a large-scale analysis of seven weak contractility/heart failure genotypes of the model organism zebrafish which all share a weak contractility phenotype. In supervised classification experiments, we screen for discriminative patterns that distinguish between observable phenotypes (homozygous mutant individuals) as well as wild-type (homozygous wild-types) and carriers (heterozygous individuals). As the method of choice we use semantic multi-classifier systems, a knowledge-based approach which constructs hypotheses from a predefined vocabulary of high-level terms (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or Gene Ontology (GO) terms). Evaluating these models leads to a compact description of the underlying processes and guides the screening for new molecular markers of heart failure. Furthermore, we were able to independently corroborate the identified processes in Wistar rats.

Cite

CITATION STYLE

APA

Lausser, L., Siegle, L., Rottbauer, W., Frank, D., Just, S., & Kestler, H. A. (2018). Semantic multi-classifier systems identify predictive processes in heart failure models across species. Biomolecules, 8(4). https://doi.org/10.3390/biom8040158

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free