The Global Navigation Satellite System (GNSS) allows for the cost-effective estimation of the ionospheric total electron content (TEC). However, research on error characteristics of the derived TEC is scarce, which provides insights into the quality of the GNSS ionospheric observation. We investigate characteristics of errors in the derived TEC with data from ~260 GNSS dual-frequency receivers of the Crustal Movement Observation Network of China (CMONOC). The slant TEC is calculated from carrier phase measurements and the vertical TEC over China is fitted with a spatial resolution of 1◦ by 1◦ in latitude and longitude in four seasons of 2014. It is found that the errors of both the slant TEC and the derived TEC follow Laplace distribution rather than Gaussian distribution in all seasons. The errors of the slant TEC have sharper peaks than those of the derived TEC. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the slant TEC are typically 0.04 TECU and 0.2 TECU, while the MAE and RMSE of the fitting residuals for the derived TEC are typically 1 TECU and under 2 TECU, respectively. Both MAEs and RMSEs of the derived TEC have the largest value in spring and the smallest value in summer, while the seasonal dependence is only observed in RMSE of the slant TEC.
CITATION STYLE
Ma, G., Fan, J., Wan, Q., & Li, J. (2022). Error Characteristics of GNSS Derived TEC. Atmosphere, 13(2). https://doi.org/10.3390/atmos13020237
Mendeley helps you to discover research relevant for your work.