Design, Synthesis, Molecular Docking Analysis and Biological Evaluations of 4-[(Quinolin-4-yl)amino]benzamide Derivatives as Novel Anti-Influenza Virus Agents

10Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In this study, a series of 4-[(quinolin-4-yl)amino]benzamide derivatives as the novel anti-influenza agents were designed and synthesized. Cytotoxicity assay, cytopathic effect assay and plaque inhibition assay were performed to evaluate the anti-influenza virus A/WSN/33 (H1N1) activity of the target compounds. The target compound G07 demonstrated significant anti-influenza virus A/WSN/33 (H1N1) activity both in cytopathic effect assay (EC50 = 11.38 ± 1.89 µM) and plaque inhibition assay (IC50 = 0.23 ± 0.15 µM). G07 also exhibited significant anti-influenza virus activities against other three different influenza virus strains A/PR/8 (H1N1), A/HK/68 (H3N2) and influenza B virus. According to the result of ribonucleoprotein reconstitution assay, G07 could interact well with ribonucleoprotein with an inhibition rate of 80.65% at 100 µM. Furthermore, G07 exhibited significant activity target PA−PB1 subunit of RNA polymerase according to the PA−PB1 inhibitory activity prediction by the best pharmacophore Hypo1. In addition, G07 was well drug-likeness based on the results of Lipinski’s rule and ADMET prediction. All the results proved that 4-[(quinolin-4-yl)amino]benzamide derivatives could generate potential candidates in discovery of anti-influenza virus agents.

Cite

CITATION STYLE

APA

Zhang, C., Tang, Y. S., Meng, C. R., Xu, J., Zhang, D. L., Wang, J., … Hu, C. (2022). Design, Synthesis, Molecular Docking Analysis and Biological Evaluations of 4-[(Quinolin-4-yl)amino]benzamide Derivatives as Novel Anti-Influenza Virus Agents. International Journal of Molecular Sciences, 23(11). https://doi.org/10.3390/ijms23116307

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free