Model-based reconstruction of distributed phenomena using discretized representations of partial differential equations

0Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This article addresses the model-based reconstruction and prediction of distributed phenomena characterized by partial differential equations, which are monitored by sensor networks. The novelty of the proposed reconstruction method is the systematic approach and the integrated treatment of uncertainties, which occur in the physical model and arise naturally from noisy measurements. By this means it is possible not only to reconstruct the entire phenomenon, even at non-measurement points, but also to reconstruct the complete density function of the state characterizing the distributed phenomenon. In the first step, the partial differential equation, i.e., distributed -parameter system, is spatially and temporally decomposed leading to a finite -dimensional state space form. In the next step, the state of the resulting lumped -parameter system, which provides an approximation of the solution of the underlying partial differential equation, is dynamically estimated under consideration of uncertainties. By using the estimation results, several additional tasks can be achieved by the sensor network, e.g. optimal sensor placement, optimal scheduling, model improvement, and system identification. The performance of the proposed model-based reconstruction method is demonstrated by means of simulations. © 2008 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Sawo, F., Roberts, K., & Hanebeck, U. D. (2008). Model-based reconstruction of distributed phenomena using discretized representations of partial differential equations. In Lecture Notes in Electrical Engineering (Vol. 15, pp. 307–326). https://doi.org/10.1007/978-3-540-79142-3_24

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free