Contrasting Geographic Patterns of Ignition Probability and Burn Severity in the Mojave Desert

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The extent and frequency of fire has increased in many arid systems over the last century, with a large proportion of area in some regions undergoing transitions to novel conditions. Portions of the Mojave Desert in southwestern North America have undergone such transitions, most often from woody to herbaceous-dominated systems. These transitions have often been attributed to the proliferation of invasive annual grasses that promote more frequent fire, but recent evidence indicates that transitions can also occur independent of fire frequency if burn severity is high. In addition, high probability of ignition (i.e., potentially high fire frequency) and high burn severity may not always be geographically related. Therefore, our goals were to: (1) map potential burn severity, fire frequency, and probability of ignition across the Mojave; and, (2) evaluate spatial association among predicted burn severity, fire frequency and probability of ignition. We first mapped perimeters of 250 wildfires > 405 ha that occurred from 1972 to 2010, then extracted data on fire frequency (number of times burned from 1972 to 2010), burn severity (the difference Normalized Burn Ratio), and 15 predictor variables representing physiography, climate, ignition, and vegetation. Maximum entropy was used to predict probability of ignition and Random Forest models were used to predict dNBR and fire frequency. Areas with high burn severity and high ignition probability had opposite spatial trends; areas with high burn severity were predicted to predominantly be in the northwest part of the region whereas areas with high ignition probability were predicted to be in the northeast. The models indicate the existence of a number of spatially structured but temporally dynamic fire regimes throughout the Mojave Desert. Two prevalent and ecologically significant regimes include one with frequent fires of low to moderate severity and another with infrequent fire of high severity. Areas with high fire frequency are currently limited in extent (<1% total area). However, cover of invasive grasses can remain high decades after a burn of high or moderate severity, so grass-fire cycles could develop in areas where there may be expectations of infrequent fire as well as those with relatively high fire frequency.

References Powered by Scopus

Random forests

106516Citations
N/AReaders
Get full text

Maximum entropy modeling of species geographic distributions

14751Citations
N/AReaders
Get full text

A new method for non-parametric multivariate analysis of variance

13250Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Homogenization of soil seed bank communities by fire and invasive species in the Mojave Desert

7Citations
N/AReaders
Get full text

Variations in climate drive behavior and survival of small desert tortoises

5Citations
N/AReaders
Get full text

Selection of microhabitats, plants, and plant parts eaten by a threatened tortoise: observations during a superbloom

2Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Klinger, R., Underwood, E. C., McKinley, R., & Brooks, M. L. (2021). Contrasting Geographic Patterns of Ignition Probability and Burn Severity in the Mojave Desert. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.593167

Readers over time

‘21‘22‘23‘24‘25036912

Readers' Seniority

Tooltip

Lecturer / Post doc 1

50%

Researcher 1

50%

Readers' Discipline

Tooltip

Social Sciences 1

33%

Engineering 1

33%

Earth and Planetary Sciences 1

33%

Save time finding and organizing research with Mendeley

Sign up for free
0