This study proposes a pupil-tracking method applicable to drivers both with and without sunglasses on, which has greater compatibility with augmented reality (AR) three-dimensional (3D) head-up displays (HUDs). Performing real-time pupil localization and tracking is complicated by drivers wearing facial accessories such as masks, caps, or sunglasses. The proposed method fulfills two key requirements: low complexity and algorithm performance. Our system assesses both bare and sunglasses-wearing faces by first classifying images according to these modes and then assigning the appropriate eye tracker. For bare faces with unobstructed eyes, we applied our previous regression-algorithm-based method that uses scale-invariant feature transform features. For eyes occluded by sunglasses, we propose an eye position estimation method: our eye tracker uses nonoccluded face area tracking and a supervised regression-based pupil position estimation method to locate pupil centers. Experiments showed that the proposed method achieved high accuracy and speed, with a precision error of <10 mm in <5 ms for bare and sunglasses-wearing faces for both a 2.5 GHz CPU and a commercial 2.0 GHz CPU vehicle-embedded system. Coupled with its performance, the low CPU consumption (10%) demonstrated by the proposed algorithm highlights its promise for implementation in AR 3D HUD systems.
CITATION STYLE
Kang, D., & Chang, H. S. (2021). Low-complexity pupil tracking for sunglasses-wearing faces for glasses-free 3d huds. Applied Sciences (Switzerland), 11(10). https://doi.org/10.3390/app11104366
Mendeley helps you to discover research relevant for your work.