Detecting memory and structure in human navigation patterns using Markov chain models of varying order

75Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work. © 2014 Singer et al.

Cite

CITATION STYLE

APA

Singer, P., Helic, D., Taraghi, B., & Strohmaier, M. (2014). Detecting memory and structure in human navigation patterns using Markov chain models of varying order. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102070

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free