Divergent and Synergistic Photocatalysis: Hydro- and Oxoalkylation of Vinyl Arenes for the Stereoselective Synthesis of Cyclopentanols via a Formal [4+1]-Annulation of 1,3-Dicarbonyls

15Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The controllable divergent reactivity of 1,3-dicarbonyls is described, which enables the efficient hydro- and oxoalkylation of vinyl arenes. Both reaction pathways are initiated through the formation of polarity-reversed C-centered-radical intermediates at the active methylene center of 1,3-dicarbonyls via direct photocatalytic C-H bond transformations. The oxoalkylation of alkenes is achieved under aerobic conditions via a Cu(II)-photomediated rebound mechanism, while the corresponding hydroalkylation becomes possible under a nitrogen atmosphere by the combination of 4CzIPN and a Brønsted base. The breadth of these divergent protocols is demonstrated in the late-stage modification of drugs and natural products and by the transformation of the products to a variety of heterocycles such as pyridines, pyrroles, or furans. Moreover, the two catalytic modes can be combined synergistically for the stereoselective construction of cyclopentanol derivatives in a formal [4+1]-annulation process.

Cite

CITATION STYLE

APA

Katta, N., Zhao, Q. Q., Mandal, T., & Reiser, O. (2022). Divergent and Synergistic Photocatalysis: Hydro- and Oxoalkylation of Vinyl Arenes for the Stereoselective Synthesis of Cyclopentanols via a Formal [4+1]-Annulation of 1,3-Dicarbonyls. ACS Catalysis, 12(22), 14398–14407. https://doi.org/10.1021/acscatal.2c04736

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free