Martingale Approach to Pricing Perpetual American Options

  • Gerber H
  • Shiu E
50Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

The method of Esscher transforms is a tool for valuing options on a stock, if the logarithm of the stock price is governed by a stochastic process with stationary and independent increments. The price of a derivative security is calculated as the expectation, with respect to the risk-neutral Esscher measure, of the discounted payoffs. Applying the optional sampling theorem we derive a simple, yet general formula for the price of a perpetual American put option on a stock whose downward movements are skip-free. Similarly, we obtain a formula for the price of a perpetual American call option on a stock whose upward movements are skip-free. Under the classical assumption that the stock price is a geometric Brownian motion, the general perpetual American contingent claim is analysed, and formulas for the perpetual down-and-out call option and Russian option are obtained. The martingale approach avoids the use of differential equations and provides additional insight. We also explain the relationship between Samuelson's high contact condition and the first order condition for optimality.

Cite

CITATION STYLE

APA

Gerber, H. U., & Shiu, E. S. W. (1994). Martingale Approach to Pricing Perpetual American Options. ASTIN Bulletin, 24(2), 195–220. https://doi.org/10.2143/ast.24.2.2005065

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free