Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis

9Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Mercury is a ubiquitous global environmental toxicant responsible for most US fish advisories. Processes governing mercury concentrations in rivers and streams are not well understood, particularly at multiple spatial scales. We investigate how insights gained from reach-scale mercury data and model simulations can be applied at broader watershed scales using a spatially and temporally explicit watershed hydrology and biogeochemical cycling model, VELMA. We simulate fate and transport using reach-scale (0.1 km 2 ) study data and evaluate applications to multiple watershed scales. Reach-scale VELMA parameterization was applied to two nested sub-watersheds (28 km 2 and 25 km 2 ) and the encompassing watershed (79 km 2 ). Results demonstrate that simulated flow and total mercury concentrations compare reasonably to observations at different scales, but simulated methylmercury concentrations are out-of-phase with observations. These findings suggest that intricacies of methylmercury biogeochemical cycling and transport are under-represented in VELMA and underscore the complexity of simulating mercury fate and transport.

Cite

CITATION STYLE

APA

Knightes, C. D., Golden, H. E., Journey, C. A., Davis, G. M., Conrads, P. A., Marvin-Dipasquale, M., … Bradley, P. M. (2014). Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis. Environmental Pollution, 187, 182–192. https://doi.org/10.1016/j.envpol.2013.12.026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free