Grading detection of “Red Fuji” apple in Luochuan based on machine vision and near-infrared spectroscopy

12Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

A quality detection system for the “Red Fuji” apple in Luochuan was designed for automatic grading. According to the Chinese national standard, the grading principles of apple appearance quality and Brix detection were determined. Based on machine vision and image processing, the classifier models of apple defect, contour, and size were constructed. And then, the grading thresholds were set to detect the defective pixel ratio t, aspect ratio λ, and the cross-sectional diameter Wp in the image of the apple. Spectral information of apples in the wavelength range of 400 nm~1000 nm was collected and the multiple scattering correction (MSC) and standard normal variable (SNV) transformation methods were used to preprocess spectral reflectance data. The competitive adaptive reweighted sampling (CARS) algorithm and the successive projections algorithm (SPA) were used to extract characteristic wavelength points containing Brix information, and the CARS-PLS (partial least squares) algorithm was used to establish a Brix prediction model. Apple defect, contour, size, and Brix were combined as grading indicators. The apple quality online grading detection platform was built, and apple’s comprehensive grading detection algorithm and upper computer software were designed. The experiments showed that the average accuracy of apple defect, contour, and size grading detection was 96.67%, 95.00%, and 94.67% respectively, and the correlation coefficient Rp of the Brix prediction set was 0.9469. The total accuracy of apple defect, contour, size, and Brix grading was 96.67%, indicating that the detection system designed in this paper is feasible to classify “Red Fuji” apple in Luochuan.

Cite

CITATION STYLE

APA

Wang, J., Huo, Y., Wang, Y., Zhao, H., Li, K., Liu, L., & Shi, Y. (2022). Grading detection of “Red Fuji” apple in Luochuan based on machine vision and near-infrared spectroscopy. PLoS ONE, 17(8 August). https://doi.org/10.1371/journal.pone.0271352

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free