Valid probabilistic predictions for ginseng with venn machines using electronic nose

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

In the application of electronic noses (E-noses), probabilistic prediction is a good way to estimate how confident we are about our prediction. In this work, a homemade E-nose system embedded with 16 metal-oxide semi-conductive gas sensors was used to discriminate nine kinds of ginsengs of different species or production places. A flexible machine learning framework, Venn machine (VM) was introduced to make probabilistic predictions for each prediction. Three Venn predictors were developed based on three classical probabilistic prediction methods (Platt’s method, Softmax regression and Naive Bayes). Three Venn predictors and three classical probabilistic prediction methods were compared in aspect of classification rate and especially the validity of estimated probability. A best classification rate of 88.57% was achieved with Platt’s method in offline mode, and the classification rate of VM-SVM (Venn machine based on Support Vector Machine) was 86.35%, just 2.22% lower. The validity of Venn predictors performed better than that of corresponding classical probabilistic prediction methods. The validity of VM-SVM was superior to the other methods. The results demonstrated that Venn machine is a flexible tool to make precise and valid probabilistic prediction in the application of E-nose, and VM-SVM achieved the best performance for the probabilistic prediction of ginseng samples.

Cite

CITATION STYLE

APA

Wang, Y., Miao, J., Lyu, X., Liu, L., Luo, Z., & Li, G. (2016). Valid probabilistic predictions for ginseng with venn machines using electronic nose. Sensors (Switzerland), 16(7). https://doi.org/10.3390/s16071088

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free