Polymer composites are favorite materials for sensing applications due to their low cost and easy fabrication. In the current study, composite nanofibers consisting of polyethylene oxide (PEO), oxidized multi-walled carbon nanotubes (MWCNT) and copper oxide (CuO) nanoparticles with 1% and 3% of fillers (i.e., PEO–CuO–MWCNT: 1%, and PEO–CuO–MWCNT: 3%) were suc-cessfully developed through electrospinning for humidity sensing applications. The composite nan-ofibers were characterized by FTIR, XRD, SEM and EDX analysis. Firstly, they were loaded on an interdigitated electrode (IDE), and then the humidity sensing efficiency was investigated through a digital LCR meter (E4980) at different frequencies (100 Hz–1MHz), as well as the percentage of relative humidity (RH). The results indicated that the composite nanofibers containing 1% and 3% MWCNT, combined with CuO in PEO polymer matrix, showed potent resistive and capacitive response along with high sensitivity to humidity at room temperature in an RH range of 30–90%. More specifically, the PEO–CuO–MWCNT: 1% nanocomposite displayed a resistive rapid response time within 3 s and a long recovery time of 22 s, while the PEO–CuO–MWCNT: 3% one exhibited 20 s and 11 s between the same RH range, respectively.
CITATION STYLE
Ahmad, W., Jabbar, B., Ahmad, I., Jan, B. M., Stylianakis, M. M., Kenanakis, G., & Ikram, R. (2021). Highly sensitive humidity sensors based on polyethylene oxide/cuo/multi walled carbon nanotubes composite nanofibers. Materials, 14(4), 1–19. https://doi.org/10.3390/ma14041037
Mendeley helps you to discover research relevant for your work.