The single-crystal diamond trap (SCDT): a new method to determine the composition of high-P–T fluids

0Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In view of recently reported discrepancies in mineral solubility results obtained with the classical diamond trap method, an alternative approach to quantify the composition of high P–T fluids was developed. In this approach the high P–T fluids are trapped in laser-drilled holes within single-crystal diamond plates and subsequently analyzed by LA–ICP–MS using the same pit size as the one that was used to drill the holes, which allows more rigorous testing of the data reproducibility than in the case of the classical diamond trap, where the fluid resides in a large, open network. To reduce the spikiness of the LA–ICP–MS signals and minimize element fractionation, the aqueous solution within the holes was allowed to evaporate, and the solid residue was melted to a glass. Because this results in the partial loss of the internal standard elements that are usually used for quantifying the LA–ICP–MS signals we developed a new quantification procedure that works without any internal standard in the fluid but instead uses the carbon signal produced by the epoxy that was filled into the holes after melting the precipitates. The new method was first tested on holes filled with epoxy resins doped with known amounts of chemicals, then on holes filled with known amounts of minerals that were subsequently melted, and finally on real high P–T mineral solubility experiments at 1.0 GPa and 700–900 °C in the quartz–H2O and olivine–enstatite–H2O systems, for which reliable reference data exist. In all 15 experiments the measured concentrations agree within 1–21% (avg. 13%) with the reference values. In contrast, four mineral solubility experiments that were performed at identical conditions with the classical diamond trap method returned concentrations that deviated by 7–56% (avg. 28%) from the reference value. Furthermore, a strong fractionation effect that has been observed during the ablation of albite + H2O in a classical diamond trap is efficiently prevented in our single-crystal diamond trap (SCDT) approach. On the downside, we observe significant mobility of alkalies during the melting step in our approach.

Cite

CITATION STYLE

APA

Abeykoon, S., & Audétat, A. (2022). The single-crystal diamond trap (SCDT): a new method to determine the composition of high-P–T fluids. Contributions to Mineralogy and Petrology, 177(2). https://doi.org/10.1007/s00410-021-01882-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free