Porphyrins and metallopophyrins have attracted the attention of chemists for the past 100 years or more owing to their widespread involvement in biology. More recently, synthetic porphyrins and porphyrin-like macrocycles have attracted the attention of researchers due to their diverse applications as sensitizers for photodynamic therapy, MRI contrasting agents, and complexing agents for larger metal ions and also for their anion binding abilities. The number of π-electrons in the porphyrin ring can be increased either by increasing the number of conjugated double bonds between the pyrrole rings or by increasing the number of heterocyclic rings. Thus, 22π sapphyrins, 26π rubyrins, 30π heptaphyrins, 34π octaphyrins and higher cyclic polypyrrole analogues containing 40π, 48π, 64π, 80π and 96π systems have recently been reported in the literature. These macrocycles show rich structural diversity where normal and different kinds of inverted structures have been identified. In this review, an attempt has been made to collect the literature of the inverted porphyrins and expanded porphyrins reported until December 2001. Since the meso aryl expanded porphyrins have tendency to form both inverted and non-inverted structures more emphasis has been given to meso aryl expanded porphyrins.
CITATION STYLE
Pushpan, S. K., Venkatraman, S., Anand, V. G., Sankar, J., Rath, H., & Chandrashekar, T. K. (2002). Inverted porphyrins and expanded porphyrins: An overview. Proceedings of the Indian Academy of Sciences: Chemical Sciences, 114(4), 311–338. https://doi.org/10.1007/BF02703823
Mendeley helps you to discover research relevant for your work.