Space weather phenomena such as solar flares have a massive destructive power when they reach a certain magnitude. Here, we explore the deep-learning approach in order to build a solar flare-forecasting model, while examining its limitations and feature-extraction ability based on the available Geostationary Operational Environmental Satellite (GOES) X-ray time-series data. We present a multilayer 1D convolutional neural network to forecast the solar flare event probability occurrence of M- and X-class flares at 1, 3, 6, 12, 24, 48, 72, and 96 hr time frames. The forecasting models were trained and evaluated in two different scenarios: (1) random selection and (2) chronological selection, which were compared afterward in terms of common score metrics. Additionally, we also compared our results to state-of-the-art flare-forecasting models. The results indicates that (1) when X-ray time-series data are used alone, the suggested model achieves higher score results for X-class flares and similar scores for M-class as in previous studies. (2) The two different scenarios obtain opposite results for the X- and M-class flares. (3) The suggested model combined with solely X-ray time-series fails to distinguish between M- and X-class magnitude solar flare events. Furthermore, based on the suggested method, the achieved scores, obtained solely from X-ray time-series measurements, indicate that substantial information regarding the solar activity and physical processes are encapsulated in the data, and augmenting additional data sets, both spatial and temporal, may lead to better predictions, while gaining a comprehensive physical interpretation regarding solar activity. All source codes are available at https://github.com/vladlanda .
CITATION STYLE
Landa, V., & Reuveni, Y. (2022). Low-dimensional Convolutional Neural Network for Solar Flares GOES Time-series Classification. The Astrophysical Journal Supplement Series, 258(1), 12. https://doi.org/10.3847/1538-4365/ac37bc
Mendeley helps you to discover research relevant for your work.