Inhibition of platelet-derived growth factor receptor (PDGFR) signaling restricts the growth of human breast cancer in the bone of nude mice. We hypothesized that osteoblast-secreted substances may alter the response capacity of breast cancer cells to the PDGFRs tyrosine kinase inhibitor imatinib mesylate. We found that osteoblast-conditioned medium (OCM) increases the proliferation rate of the estrogen receptor negative (ER-) MDA-MB-231 and of the ER+ MCF-7 human breast cancer cell lines and the growth-promoting effect on ER+ cells is independent from estrogen. OCM significantly improved the dose- and the time-dependent sensitivity of the tumor cells to the anti-proliferative effect of imatinib. We also found that MDA-MB-231 and MCF-7 cells express the two PDGFRs subtypes, PDGFR-α and PDGFR-β, and OCM treatment increases the expression of the PDGFRs. Furthermore, imatinib inhibited the phosphorylation rate of its target tyrosine kinase receptors. We conclude that bone microenvironment, through osteoblast-secreted substances may cause estrogen-independent proliferation of breast cancer cells by a mechanism mediated by the induction of PDGFRs expression. The enhanced sensitivity of OCM-treated breast cancer cells to imatinib would justify investigation on the efficacy of imatinib in bone breast cancer metastasis. © 2007 Society for Endocrinology.
CITATION STYLE
Brama, M., Basciani, S., Cherubini, S., Mariani, S., Migliaccio, S., Arizzi, M., … Gnessi, L. (2007). Osteoblast-conditioned medium promotes proliferation and sensitizes breast cancer cells to imatinib treatment. Endocrine-Related Cancer, 14(1), 61–72. https://doi.org/10.1677/erc.1.01307
Mendeley helps you to discover research relevant for your work.