Cortical network dynamics of perceptual decision-making in the human brain

118Citations
Citations of this article
381Readers
Mendeley users who have this article in their library.

Abstract

Goal-directed behavior requires the flexible transformation of sensory evidence about our environment into motor actions. Studies of perceptual decision-making have shown that this transformation is distributed across several widely separated brain regions. Yet, little is known about how decision-making emerges from the dynamic interactions among these regions. Here, we review a series of studies, in which we characterized the cortical network interactions underlying a perceptual decision process in the human brain. We used magnetoencephalography to measure the large-scale cortical population dynamics underlying each of the sub-processes involved in this decision: the encoding of sensory evidence and action plan, the mapping between the two, and the attentional selection of task-relevant evidence. We found that these sub-processes are mediated by neuronal oscillations within specific frequency ranges. Localized gamma-band oscillations in sensory and motor cortices reflect the encoding of the sensory evidence and motor plan. Large-scale oscillations across widespread cortical networks mediate the integrative processes connecting these local networks: Gamma- and beta-band oscillations across frontal, parietal, and sensory cortices serve the selection of relevant sensory evidence and its flexible mapping onto action plans. In sum, our results suggest that perceptual decisions are mediated by oscillatory interactions within overlapping local and large-scale cortical networks. © 2011 Siegel, Engel and Donner.

Cite

CITATION STYLE

APA

Siegel, M., Engel, A. K., & Donner, T. H. (2011). Cortical network dynamics of perceptual decision-making in the human brain. Frontiers in Human Neuroscience, (FEBRUARY), 1–12. https://doi.org/10.3389/fnhum.2011.00021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free