Contamination of lead indicates one of the major threats to soil system. Phytoremediation technique utilized plants which are able to tolerate and accumulate metals within in their tissues. It has recently been suggested that biofuel plants are more suitable for both utilization and remediation of metal contaminated soil. This study reported Pb phytoremediation potential of Cyamopsis tetragonoloba L. in comparison with Sesamum indicum L. in the framework of a pot-experiment. Plants were subjected to seven Pb concentrations (0, 100, 200, 400, 600, 800 and 1000 mg kg-1 soil) for 12 weeks. Our results demonstrated that both C. tetragonoloba and S. indicum were able to tolerate Pb concentrations up to 1000 mg kg-1 which confirms the plant ability to grow well in higher Pb levels. Significant metal accumulation was observed in root along with reduced biomass for both plants species. Furthermore, both plant species could possibly be used for phytostabilization, with success in marginally polluted soils where their growth would not be impaired and decontamination of Pb could be maintained at satisfying levels. However, bioconcentration factor (BCF), bioaccumulation coefficient (BAC) and translocation factor (TF) values proposed that C. tetragonoloba was more efficient for phytoremediation than S. indicum at higher Pb levels.
CITATION STYLE
Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, M. S., & Amin, F. (2018). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geology, Ecology, and Landscapes, 2(1), 51–60. https://doi.org/10.1080/24749508.2018.1452464
Mendeley helps you to discover research relevant for your work.