Metabolomic analysis of longissimus from underperforming piglets relative to piglets with normal preweaning growth

12Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Recent increases in intra-litter variability in weaning weight have raised swine production costs. A contributor to this variability is the normal birth weight pig that grows at a slower rate than littermates of similar birth weight. The goal of this study was to interrogate biochemical profiles manifested in skeletal muscle originating from slow growing (SG) and faster growing littermates (control), with the aim of identifying differences in metabolic pathway utilization between skeletal muscle of the SG pig relative to its littermates. Samples of longissimus muscle from littermate pairs of pigs were collected at 21 d of age for metabolomic analysis (Metabolon, Inc., Durham, NC). Results: Birth weights did not differ between littermate pairs of SG and Control pigs (P > 0.05). Weaning weights differed by 1.51 ± 0.19 kg (P < 0.001). Random forest (RF) analysis was effective at segregating the metabolome of muscle samples by growth rate, resulting in a predictive accuracy of 81% versus random segregation (50%). Decreases in sugars in the pentose phosphate pathway (PPP) in the longissimus of SG pigs were detected (P < 0.05). Decreases were also apparent in glycolytic intermediates (glycerol-3-phosphate and lactate) and key glycolysis-derived intermediates (glucose-6-phosphate and fructose-6-phosphate; P < 0.05). SG pigs had increased levels of phospholipids, lysolipids, diacylglycerols, and sphingolipids (P < 0.05). Pathway analysis identified a cluster of molecules associated with muscle and collagen/extracellular matrix breakdown that are increased in the SG pig (glutamate, 3-methylhistidine and hydroxylated proline moieties; P < 0.05). Nicotinate metabolism was altered in SG pigs, resulting in a 78% decrease in the nicotinamide adenine dinucleotide pool (P < 0.05). Conclusions: These metabolomic data provide the first evidence for biochemical mechanisms that should be investigated to determine if they have a potential role in the slow growth in some normal birth weight piglets that contribute to increased intra-litter variability in weaning weights and provides essential information and potential targets for the development of nutritional intervention strategies.

Cite

CITATION STYLE

APA

Ramsay, T. G., Stoll, M. J., Shannon, A. E., & Blomberg, L. A. (2018). Metabolomic analysis of longissimus from underperforming piglets relative to piglets with normal preweaning growth. Journal of Animal Science and Biotechnology, 9(1). https://doi.org/10.1186/s40104-018-0251-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free