Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the selective loss of motor neurons. There is no effective treatment or drug against ALS, and the precise mechanisms leading to the selective loss of motor neurons are still unknown. We investigated the effect of a Chinese prescription, Wen-Pi-Tang, on the ALS model mouse SOD1 G93A. Although the oral administration of Wen-Pi-Tang extract to SOD1G93A mice had no significant effect on body weight loss and survival time, Wen-Pi-Tang delayed disease onset. Therefore, we evaluated immunohistological changes in the spinal cord of SOD1G93A mice during the early disease period, and found that Wen-Pi-Tang extract inhibited neuronal loss in the lumbar segment of the spinal cord of mice. Furthermore, increased astrocytes and microglial cells, which increase prior to neuronal loss, in spinal cords were significantly reduced in the Wen-Pi-Tang treated group. Since oxidative markers, heme oxygenase-1 and inducible nitric oxide synthase, in the spinal cord were also reduced as well as the change in microglia, the administration of Wen-Pi-Tang was thought to delay disease onset by inhibiting glial cell activation. © 2009 Pharmaceutical Society of Japan.
CITATION STYLE
Sekiya, M., Ichiyanagi, T., Ikeshiro, Y., & Yokozawa, T. (2009). The Chinese prescription Wen-Pi-Tang extract delays disease onset in amyotrophic lateral sclerosis model mice while attenuating the activation of glial cells in the spinal cord. Biological and Pharmaceutical Bulletin, 32(3), 382–388. https://doi.org/10.1248/bpb.32.382
Mendeley helps you to discover research relevant for your work.