Multi-nanolayered VO2/Sapphire Thin Film via Spinodal Decomposition

17Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Coating of VO2-based thin film has been extensively studied for fabricating energy-saving smart windows. One of the most efficient ways for fabricating high performance films is to create multi-nanolayered structure. However, it has been highly challenge to make such layers in the VO2-based films using conventional methods. In this work, a facile two-step approach is established to fabricate multilayered VO2-TiO2 thin films. We first deposited the amorphous thin films upon sputtering, and then anneal them to transform the amorphous phase into alternating Ti-and V-rich multilayered nanostructure via a spinodal decomposition mechanism. In particular, we take advantage of different sapphire substrate planes (A-plane (11-20), R-plane (1-102), C-plane (0001), and M-plane (10-10)) to achieve different decomposition modes. The new approach has made it possible to tailoring the microstructure of the thin films for optimized performances by controlling the disorder-order transition in terms of both kinetic and thermodynamic aspects. The derived thin films exhibit superior optical modulation upon phase transition, significantly reduced transition temperature and hysteresis loop width, and high degradation resistance, these improvements indicate a high potential to be used for fabricating the next generation of energy saving smart windows.

Cite

CITATION STYLE

APA

Sun, G., Cao, X., Yue, Y., Gao, X., Long, S., Li, N., … Jin, P. (2018). Multi-nanolayered VO2/Sapphire Thin Film via Spinodal Decomposition. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-23412-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free