Laparoscopic surgical box model training for surgical trainees with limited prior laparoscopic experience

32Citations
Citations of this article
174Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time consuming, costly, and of variable effectiveness. Training using a box model physical simulator is an option to supplement standard training. However, the value of this modality on trainees with limited prior laparoscopic experience is unknown. Objectives: To compare the benefits and harms of box model training for surgical trainees with limited prior laparoscopic experience versus standard surgical training or supplementary animal model training. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and Science Citation Index Expanded to May 2013. Selection criteria: We planned to include all randomised clinical trials comparing box model trainers versus other forms of training including standard laparoscopic training and supplementary animal model training in surgical trainees with limited prior laparoscopic experience. We also planned to include trials comparing different methods of box model training. Data collection and analysis: Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5. For each outcome, we calculated the risk ratio (RR), mean difference (MD), or standardised mean difference (SMD) with 95% confidence intervals (CI) based on intention-to-treat analysis whenever possible. Main results: We identified eight trials that met the inclusion criteria. One trial including 17 surgical trainees did not contribute to the meta-analysis. We included seven trials (249 surgical trainees belonging to various postgraduate years ranging from year one to four) in which the participants were randomised to supplementary box model training (122 trainees) versus standard training (127 trainees). Only one trial (50 trainees) was at low risk of bias. The box trainers used in all the seven trials were video trainers. Six trials were conducted in USA and one trial in Canada. The surgeries in which the final assessments were made included laparoscopic total extraperitoneal hernia repairs, laparoscopic cholecystectomy, laparoscopic tubal ligation, laparoscopic partial salpingectomy, and laparoscopic bilateral mid-segment salpingectomy. The final assessments were made on a single operative procedure. There were no deaths in three trials (0/82 (0%) supplementary box model training versus 0/86 (0%) standard training; RR not estimable; very low quality evidence). The other trials did not report mortality. The estimated effect on serious adverse events was compatible with benefit and harm (three trials; 168 patients; 0/82 (0%) supplementary box model training versus 1/86 (1.1%) standard training; RR 0.36; 95% CI 0.02 to 8.43; very low quality evidence). None of the trials reported patient quality of life. The operating time was significantly shorter in the supplementary box model training group versus the standard training group (1 trial; 50 patients; MD -6.50 minutes; 95% CI -10.85 to -2.15). The proportion of patients who were discharged as day-surgery was significantly higher in the supplementary box model training group versus the standard training group (1 trial; 50 patients; 24/24 (100%) supplementary box model training versus 15/26 (57.7%) standard training; RR 1.71; 95% CI 1.23 to 2.37). None of the trials reported trainee satisfaction. The operating performance was significantly better in the supplementary box model training group versus the standard training group (seven trials; 249 trainees; SMD 0.84; 95% CI 0.57 to 1.10). None of the trials compared box model training versus animal model training or versus different methods of box model training. Authors' conclusions: There is insufficient evidence to determine whether laparoscopic box model training reduces mortality or morbidity. There is very low quality evidence that it improves technical skills compared with standard surgical training in trainees with limited previous laparoscopic experience. It may also decrease operating time and increase the proportion of patients who were discharged as day-surgery in the first total extraperitoneal hernia repair after box model training. However, the duration of the benefit of box model training is unknown. Further well-designed trials of low risk of bias and random errors are necessary. Such trials should assess the long-term impact of box model training on clinical outcomes and compare box training with other forms of training.

Cite

CITATION STYLE

APA

Gurusamy, K. S., Nagendran, M., Toon, C. D., & Davidson, B. R. (2014, March 1). Laparoscopic surgical box model training for surgical trainees with limited prior laparoscopic experience. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. https://doi.org/10.1002/14651858.CD010478.pub2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free