Fusion learning for semg recognition of multiple upper‐limb rehabilitation movements

10Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Surface electromyogram (sEMG) signals have been used in human motion intention recognition, which has significant application prospects in the fields of rehabilitation medicine and cognitive science. However, some valuable dynamic information on upper‐limb motions is lost in the process of feature extraction for sEMG signals, and there exists the fact that only a small variety of rehabilitation movements can be distinguished, and the classification accuracy is easily affected. To solve these dilemmas, first, a multiscale time–frequency information fusion representation method (MTFIFR) is proposed to obtain the time–frequency features of multichannel sEMG signals. Then, this paper designs the multiple feature fusion network (MFFN), which aims at strengthening the ability of feature extraction. Finally, a deep belief network (DBN) was introduced as the classification model of the MFFN to boost the generalization performance for more types of upper‐limb movements. In the experiments, 12 kinds of upper‐limb rehabilitation actions were recognized utilizing four sEMG sensors. The maximum identification accuracy was 86.10% and the average classification accuracy of the proposed MFFN was 73.49%, indicating that the time–frequency representation approach combined with the MFFN is superior to the traditional machine learning and con-volutional neural network.

Cite

CITATION STYLE

APA

Zhong, T., Li, D., Wang, J., Xu, J., An, Z., & Zhu, Y. (2021). Fusion learning for semg recognition of multiple upper‐limb rehabilitation movements. Sensors, 21(16). https://doi.org/10.3390/s21165385

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free