Asteroids seen by JWST-MIRI: Radiometric size, distance, and orbit constraints

Citations of this article
Mendeley users who have this article in their library.


Infrared measurements of asteroids are crucial for the determination of physical and thermal properties of individual objects, and for understanding the small-body populations in the solar system as a whole. However, standard radiometric methods can only be applied if the orbit of an object is known, hence its position at the time of the observation. With JWST-MIRI observations the situation will change and many unknown, often very small, solar system objects will be detected. Later orbit determinations are difficult due to the faintness of the objects and the lack of dedicated follow-up concepts. We present MIRI observations of the outer-belt asteroid (10920) 1998 BC1 and an unknown object, detected in all nine MIRI bands in close apparent proximity to (10920). We developed a new method called STM-ORBIT to interpret the multi-band measurements without knowing the object's true location. The power of the new technique is that it determines the most-likely heliocentric and observer-centric distance and phase angle ranges, allowing us to make a radiometric size estimate. The application to the MIRI fluxes of (10920) was used to validate the method. It leads to a confirmation of the known radiometric size-albedo solution, and puts constraints on the asteroid's location and orbit in agreement with its true orbit. To back up the validation of the method, we obtained additional ground-based light curve observations of (10920), combined with Gaia data, which indicate a very elongated object (a/b ≥ 1.5), with a spin-pole at (λ, β)ecl = (178◦, +81◦), with an estimated error of about 20◦, and a rotation period of 4.861191 } 0.000015 h. A thermophysical study of all available JWST-MIRI and WISE measurements leads to a size of 14.5-16.5 km (diameter of an equal-volume sphere), a geometric albedo pV between 0.05 and 0.10, and a thermal inertia in the range 9-35 (best value 15) Jm−2 s−0.5 K−1. For the newly discovered MIRI object, the STM-ORBIT method revealed a size of 100-230 m. The new asteroid must be on a low-inclination orbit (0.7◦ < i < 2.0◦) and it was located in the inner main-belt region during JWST observations. A beaming parameter η larger than 1.0 would push the size even below 100 meters, a main-belt regime that has escaped IR detections so far. This kind of MIRI observations can therefore contribute to formation and evolution studies via classical size-frequency studies, which are currently limited to objects larger than about one kilometer in size.We estimate that MIRI frames with pointings close to the ecliptic and short integration times of only a few seconds will always include a few asteroids; most of them will be unknown objects.




Müller, T. G., Micheli, M., Santana-Ros, T., Bartczak, P., Oszkiewicz, D., & Kruk, S. (2023). Asteroids seen by JWST-MIRI: Radiometric size, distance, and orbit constraints. Astronomy and Astrophysics, 670.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free