EuniceScope: Low-Cost Imaging Platform for Studying Microgravity Cell Biology

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Microgravity is proven to impact a wide range of human physiology, from stimulating stem cell differentiation to confounding cell health in bones, skeletal muscles, and blood cells. The research in this arena is progressively intensified by the increasing promises of human spaceflights. Considering the limited access to spaceflight, ground-based microgravity-simulating platforms have been indispensable for microgravity-biology research. However, they are generally complex, costly, hard to replicate and reconfigure - hampering the broad adoption of microgravity biology and astrobiology. To address these limitations, we developed a low-cost reconfigurable 3D-printed microscope coined EuniceScope to allow the democratization of astrobiology, especially for educational use. EuniceScope is a compact 2D clinostat system integrated with a modularized brightfield microscope, built upon 3D-printed toolbox. We demonstrated that this compact system offers plausible imaging quality and microgravity-simulating performance. Its high degree of reconfigurability thus holds great promise in the wide dissemination of microgravity-cell-biology research in the broader community, including Science, technology, engineering, and mathematics (STEM) educational and scientific community in the future.

Cite

CITATION STYLE

APA

Chu, W. Y., & Tsia, K. K. (2023). EuniceScope: Low-Cost Imaging Platform for Studying Microgravity Cell Biology. IEEE Open Journal of Engineering in Medicine and Biology, 4, 204–211. https://doi.org/10.1109/OJEMB.2023.3257991

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free