The CNES CLS 2022 Mean Sea Surface: Short Wavelength Improvements from CryoSat-2 and SARAL/AltiKa High-Sampled Altimeter Data

14Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

A new mean sea surface (MSS) was determined by focusing on the accuracy provided by exact-repeat altimetric missions (ERM) and the high spatial coverage of geodetic (or drifting) missions. The goal was to obtain a high-resolution MSS that would provide centimeter-level precision. Particular attention was paid to the homogeneity of the oceanic content of this MSS, and specific processing was also carried out, particularly on the data from the geodetic missions. For instance, CryoSat-2 and SARAL/AltiKa data sampled at high frequencies were enhanced using a dedicated filtering process and corrected from oceanic variability using the results of the objective analysis of sea-level anomalies provided by DUACS multi-missions gridded sea-level anomalies fields (MSLA). Particular attention was also paid to the Arctic area by combining traditional sea-surface height (SSH) with the sea levels estimated within fractures in the ice (leads). The MSS was determined using a local least-squares collocation technique, which provided an estimation of the calibrated error. Furthermore, our technique takes into account altimetric noises, ocean-variability-correlated noises, and along-track biases, which are determined independently for each observation. Moreover, variable cross-covariance models were fitted locally for a more precise determination of the shortest wavelengths, which were shorter than 30 km. The validations performed on this new MSS showed an improvement in the finest topographic structures, with amplitudes exceeding several cm, while also continuing to refine the correction of the oceanic variability. Overall, the analysis of the precision of this new CNES_CLS 2022 MSS revealed an improvement of 40% compared to the previous model, from 2015.

References Powered by Scopus

A technique for objective analysis and design of oceanographic experiments applied to MODE-73

987Citations
N/AReaders
Get full text

DUACS DT2018: 25 years of reprocessed sea level altimetry products

285Citations
N/AReaders
Get full text

On the resolutions of ocean altimetry maps

143Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Accuracy and Resolution of SWOT Altimetry: Foundation Seamounts

5Citations
N/AReaders
Get full text

CryoSat Long-Term Ocean Data Analysis and Validation: Final Words on GOP Baseline-C

3Citations
N/AReaders
Get full text

Merging Recent Mean Sea Surface Into a 2023 Hybrid Model (From Scripps, DTU, CLS, and CNES)

1Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Schaeffer, P., Pujol, M. I., Veillard, P., Faugere, Y., Dagneaux, Q., Dibarboure, G., & Picot, N. (2023). The CNES CLS 2022 Mean Sea Surface: Short Wavelength Improvements from CryoSat-2 and SARAL/AltiKa High-Sampled Altimeter Data. Remote Sensing, 15(11). https://doi.org/10.3390/rs15112910

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 4

100%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 5

83%

Physics and Astronomy 1

17%

Save time finding and organizing research with Mendeley

Sign up for free