Marine ecosystems are the most prevalent ecosystems on the planet, providing a diversity of living organisms and resources. The development of nanotechnology may provide solutions for utilizing these thousands of potential compounds as marine pharmaceuticals. Here, we designed a liposomal glycol chitosan formulation to load both doxorubicin (DOX) and rapamycin (RAPA), and then evaluated its therapeutic potential in a prepared drug-resistant cell model. We explored the stability of the drug delivery system by changing the physiological conditions and characterized its physicochemical properties. The electrostatic complexation between DOX-glycol chitosan and docosahexaenoic acid RAPA-liposomes (GC-DOX/RAPA ω-liposomes) was precisely regulated, resulting in particle size of 131.3 nm and zeta potential of −14.5 mV. The well-characterized structure of GC-DOX/RAPA ω-liposomes led to high loading efficiencies of 4.1% for DOX and 6.2% for RAPA. Also, GC-DOX/RAPA ω-liposomes exhibited high colloidal stability under physiological conditions and synergistic anti-cancer effects on DOX-resistant MDA-MB-231 cells, while showing pH-sensitive drug release behavior. Our results provided a viable example of marine pharmaceuticals with therapeutic potential for treating drug-resistant tumors using an efficient and safe drug delivery system.
CITATION STYLE
Kim, M. W., Niidome, T., & Lee, R. (2019). Glycol chitosan-docosahexaenoic acid liposomes for drug delivery: Synergistic effect of doxorubicin-rapamycin in drug-resistant breast cancer. Marine Drugs, 17(10). https://doi.org/10.3390/md17100581
Mendeley helps you to discover research relevant for your work.