Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber (NSiR), 15% SiO2 microcomposite (SSMC), 15% alumina trihydrate (ATH) microcomposite (SAMC) and 10% ATH + 2% SiO2 hybrid composite (SMNC) are presented in this study. The dielectric constant and dissipation factor were measured before and after each compression especially in the frequency range of 50 kHz to 2MHz. Before the compression, SSMC expressed the highest dielectric constant of 4.44 followed by SMNC and SAMC. After the compression cycle, SAMC expressed a better dielectric behavior exhibiting dielectric constant of 7.19 and a dissipation factor of 0.01164. Overall, SAMC expressed better dielectric response before and after compression cycle with dielectric constant and dissipation factor in admissible ranges.

Cite

CITATION STYLE

APA

Raza, M. H., Butt, S. U., Khattak, A., & Alahmadi, A. A. (2022). Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation. Materials, 15(7). https://doi.org/10.3390/ma15072343

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free