Physiological Evaluation of a Non-invasive Wearable Vagus Nerve Stimulation (VNS) Device

3Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Recent clinical studies suggest that Vagus nerve stimulation (VNS) may be a safe and potentially effective for disorder related to heart. In the rise of wearable medical devices, non-invasive wearable VNS devices are available to treatment of disorders related to the central nervous system. The goal of this study was to investigate the effects of VNS devices on physiological parameters of human. AMO+ is a wearable VNS device that was worn to the neck as a necklace. ECG (Electrocardiogram) and EEG (Electroencephalogram) of 30 healthy persons are measured in Center for Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea. Wireless Bionomadix (Biopac Systems, Goleta, CA) RSPEC-R used for measuring ECG and EEG2-R as used to measure EEG. EEG electrodes are placed in F3 and F4 position of head as per 10/20 System. Acqknowledge Ver. 14 used for data analysis. EEG α, β, θ, δ power spectrums are extracted from raw EEG signals. HR (Heart Rate), HF (High Frequency), LF (Low Frequency) features are extracted from raw ECG data. Data was taken before using VNS deice and after one hour of using wearable AMO VNS device. All data was taken in resting state. Statistical analysis was done by IBM SPSS Ver. 23.0. No significant difference of HR is found between cases of before using VNS device and after using VNS device. A significant difference found in case of HF power of ECG. As ECG HF power reflects the parasympathetic nervous system activity, HF power increase indicates improvement of parasympathetic nervous system activity. No significant difference of EEG α, β, θ power spectrums except δ power is found between cases of before using VNS device and after using VNS device. Wearable AMO+ VNS stimulation is expected to improve the parasympathetic nervous system activity.

Cite

CITATION STYLE

APA

Park, S. J., Hong, S., Kim, D., Hussain, I., Seo, Y., & Kim, M. K. (2020). Physiological Evaluation of a Non-invasive Wearable Vagus Nerve Stimulation (VNS) Device. In Advances in Intelligent Systems and Computing (Vol. 973, pp. 57–62). Springer Verlag. https://doi.org/10.1007/978-3-030-20476-1_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free