In silico characterization of IncX3 plasmids carrying bla OXA-181 in Enterobacterales

8Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Carbapenem-resistant Enterobacterales poses a global urgent antibiotic resistance threat because of its ability to transfer carbapenemase genes to other bacteria via horizontal gene transfer mediated by mobile genetic elements such as plasmids. Oxacillinase-181 (OXA-181) is one of the most common OXA-48-like carbapenemases, and OXA-181-producing Enterobacterales has been reported in many countries worldwide. However, systematic research concerning the overall picture of plasmids harboring blaOXA-181 in Enterobacterales is currently scarce. In this study, we aimed to determine the phylogeny and evolution of blaOXA-181-positive (gene encoding OXA-181) plasmids. To characterize the plasmids harboring blaOXA-181 in Enterobacterales, we identified 81 blaOXA-181-positive plasmids from 35,150 bacterial plasmids downloaded from the NCBI RefSeq database. Our results indicated that diverse plasmid types harbored blaOXA-181 but was predominantly carried by IncX3-type plasmids. We systematically compared the host strains, plasmid types, conjugative transfer regions, and genetic contexts of blaOXA-181 among the 66 blaOXA-181-positive IncX3 plasmids. We found that IncX3 plasmids harboring blaOXA-181 were mostly ColKP3-IncX3 hybrid plasmids with a length of 51 kb each and were mainly distributed in Escherichia coli and Klebsiella pneumoniae. Most of the IncX3 plasmids harboring blaOXA-181 were human origin. Almost all the blaOXA-181-positive IncX3 plasmids were found to carry genes coding for relaxases of the MOBP family and VirB-like type IV secretion system (T4SS) gene clusters, and all the 66 IncX3 plasmids were found to carry the genes encoding type IV coupling proteins (T4CPs) of the VirD4/TraG subfamily. Most IncX3 plasmids harbored both blaOXA-181 and qnrS1 in their genomes, and the two antibiotic resistance genes were found to a composite transposon bracketed by two copies of insertion sequence IS26 in the same orientation. Our findings provide important insights into the phylogeny and evolution of blaOXA-181-positive IncX3 plasmids and further address their role in acquiring and spreading blaOXA-181 genes in Enterobacterales.

Cite

CITATION STYLE

APA

Yu, Z., Zhang, Z., Shi, L., Hua, S., Luan, T., Lin, Q., … Li, X. (2022). In silico characterization of IncX3 plasmids carrying bla OXA-181 in Enterobacterales. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.988236

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free