Using gaze data to predict multiword expressions

18Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.

Abstract

In recent years gaze data has been increasingly used to improve and evaluate NLP models due to the fact that it carries information about the cognitive processing of linguistic phenomena. In this paper we conduct a preliminary study towards the automatic identification of multiword expressions based on gaze features from native and non-native speakers of English. We report comparisons between a part-of-speech (POS) and frequency baseline to: i) a prediction model based solely on gaze data and ii) a combined model of gaze data, POS and frequency. In spite of the challenging nature of the task, best performance was achieved by the latter. Furthermore, we explore how the type of gaze data (from native versus non-native speakers) affects the prediction, showing that data from the two groups is discriminative to an equal degree. Finally, we show that late processing measures are more predictive than early ones, which is in line with previous research on idioms and other formulaic structures.

Cite

CITATION STYLE

APA

Rohanian, O., Taslimipoor, S., Yaneva, V., & Ha, L. A. (2017). Using gaze data to predict multiword expressions. In International Conference Recent Advances in Natural Language Processing, RANLP (Vol. 2017-September, pp. 601–609). Incoma Ltd. https://doi.org/10.26615/978-954-452-049-6_078

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free