Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material

367Citations
Citations of this article
294Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials, light propagation is unusual leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride, a natural mid-infrared hyperbolic material, can act as a 'hyper-focusing lens' and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon-polaritons launched by metallic disks underneath the hexagonal boron nitride crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization.

Cite

CITATION STYLE

APA

Dai, S., Ma, Q., Andersen, T., McLeod, A. S., Fei, Z., Liu, M. K., … Basov, D. N. (2015). Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Communications, 6. https://doi.org/10.1038/ncomms7963

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free