Frequency invariant beamforming for a small-sized bi-cone acoustic vector–sensor array

6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this work, we design a small-sized bi-cone acoustic vector-sensor array (BCAVSA) and propose a frequency invariant beamforming method for the BCAVSA, inspired by the Ormia ochracea’s coupling ears and harmonic nesting. First, we design a BCAVSA using several sets of cylindrical acoustic vector-sensor arrays (AVSAs), which are used as a guide to construct the constant beamwidth beamformer. Due to the mechanical coupling system of the Ormia ochracea’s two ears, the phase and amplitude differences of acoustic signals at the bilateral tympanal membranes are magnified. To obtain a virtual BCAVSA with larger interelement distances, we then extend the coupling magnified system into the BCAVSA by deriving the expression of the coupling magnified matrix for the BCAVSA and providing the selecting method of coupled parameters for fitting the underwater signal frequency. Finally, the frequency invariant beamforming method is developed to acquire the constant beamwidth pattern in the three-dimensional plane by deriving several sets of the frequency weighted coefficients for the different cylindrical AVSAs. Simulation results show that this method achieves a narrower mainlobe width compared to the original BCAVSA. This method has lower sidelobes and a narrower mainlobe width compared to the coupling magnified bi-cone pressure sensor array.

Cite

CITATION STYLE

APA

Fang, E., Gui, C., Yang, D., & Zhu, Z. (2020). Frequency invariant beamforming for a small-sized bi-cone acoustic vector–sensor array. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030661

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free