Observation-Constrained Multicycle Dynamic Models of the Southern San Andreas and the Northern San Jacinto Faults: Addressing Complexity in Paleoearthquake Extent and Recurrence With Realistic 2D Fault Geometry

2Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding mechanical conditions that lead to complexity in earthquakes is important to seismic hazard analysis. In this study, we simulate physics-based multicycle dynamic models of the San Andreas fault (Carrizo through San Bernardino sections) and the San Jacinto fault (Claremont and Clark strands). We focus on a complex fault geometry based on the Southern California Earthquake Center Community Fault Model and its effect over multiple earthquake cycles. Using geodetically derived strain rates, we validate the models against geologic slip rates and recurrence intervals at various paleoseismic sites. We find that the interactions among fault geometry, dynamic rupture and interseismic stress accumulation produce stress heterogeneities, leading to rupture segmentation and variability in earthquake recurrence. Our models produce earthquakes with rupture extents similar to a recent comprehensive paleoseismic catalog. The “earthquake gates” of the Big Bend and the Cajon Pass occasionally impede dynamic ruptures. The angle of compression, which is the subtraction of the maximum shear strain rate direction from the local fault strike, can better determine the likelihood of the impedance of restraining bends to dynamic ruptures. Because the Big Bend has an angle of compression of ∼20°, ruptures that traverse the Big Bend, like the 1857 Fort Tejon earthquake, are more frequent than expected based on empirical relations which predict the ∼40° restraining bend to terminate most ruptures. Our models indicate that large ruptures tend to initiate north of the Big Bend and propagate southwards, similar to the 1857 earthquake, providing critical information for ground shaking assessment in the region.

Cite

CITATION STYLE

APA

Liu, D., Duan, B., Scharer, K., & Yule, D. (2022). Observation-Constrained Multicycle Dynamic Models of the Southern San Andreas and the Northern San Jacinto Faults: Addressing Complexity in Paleoearthquake Extent and Recurrence With Realistic 2D Fault Geometry. Journal of Geophysical Research: Solid Earth, 127(2). https://doi.org/10.1029/2021JB023420

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free