Universal and dynamic ridge filter for pencil beam scanning particle therapy: a novel concept for ultra-fast treatment delivery

13Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective. In pencil beam scanning particle therapy, a short treatment delivery time is paramount for the efficient treatment of moving targets with motion mitigation techniques (such as breath-hold, rescanning, and gating). Energy and spot position change time are limiting factors in reducing treatment time. In this study, we designed a universal and dynamic energy modulator (ridge filter, RF) to broaden the Bragg peak, to reduce the number of energies and spots required to cover the target volume, thus lowering the treatment time. Approach. Our RF unit comprises two identical RFs placed just before the isocenter. Both RFs move relative to each other, changing the Bragg peak’s characteristics dynamically. We simulated different Bragg peak shapes with the RF in Monte Carlo simulation code (TOPAS) and validated them experimentally. We then delivered single-field plans with 1 Gy/fraction to different geometrical targets in water, to measure the dose delivery time using the RF and compare it with the clinical settings. Main results. Aligning the RFs in different positions produces different broadening in the Bragg peak; we achieved a maximum broadening of 2.5 cm. With RF we reduced the number of energies in a field by more than 60%, and the dose delivery time by 50%, for all geometrical targets investigated, without compromising the dose distribution transverse and distal fall-off. Significance. Our novel universal and dynamic RF allows for the adaptation of the Bragg peak broadening for a spot and/or energy layer based on the requirement of dose shaping in the target volume. It significantly reduces the number of energy layers and spots to cover the target volume, and thus the treatment time. This RF design is ideal for ultra-fast treatment delivery within a single breath-hold (5-10 s), efficient delivery of motion mitigation techniques, and small animal irradiation with ultra-high dose rates (FLASH).

Cite

CITATION STYLE

APA

Maradia, V., Colizzi, I., Meer, D., Weber, D. C., Lomax, A. J., Actis, O., & Psoroulas, S. (2022). Universal and dynamic ridge filter for pencil beam scanning particle therapy: a novel concept for ultra-fast treatment delivery. Physics in Medicine and Biology, 67(22). https://doi.org/10.1088/1361-6560/ac9d1f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free