CFTR-mediated anion secretion across intestinal epithelium-like Caco-2 monolayer under PTH stimulation is dependent on intermediate conductance K+ channels

6Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Parathyroid hormone (PTH), a pleiotropic hormone that maintains mineral homeostasis, is also essential for controlling pH balance and ion transport across renal and intestinal epithelia. Optimization of luminal pH is important for absorption of trace elements, e.g., calcium and phosphorus. We have previously demonstrated that PTH rapidly stimulated electrogenic HCO3- secretion in intestinal epithelial-like Caco-2 monolayers, but the underlying cellular mechanism, contributions of other ions, particularly Cl– and K+, and long-lasting responses are not completely understood. Herein, PTH and forskolin were confirmed to induce anion secretion, which peaked within 1–3 min (early phase), followed by an abrupt decay and plateau that lasted for 60 min (late phase). In both early and late phases, apical membrane capacitance was increased with a decrease in basolateral capacitance after PTH or forskolin exposure. PTH also induced a transient increase in apical conductance with a long-lasting decrease in basolateral conductance. Anion secretion in both phases was reduced under HCO-3 -free and/or Cl--free conditions or after exposure to carbonic anhydrase inhibitor (acetazolamide), CFTR inhibitor (CFTRinh-172), Na+/H+ exchanger (NHE)-3 inhibitor (tenapanor), or K+ channel inhibitors (BaCl2, clotrimazole, and TRAM-34; basolateral side), the latter of which suggested that PTH action was dependent on basolateral K+ recycling. Furthermore, early- and late-phase responses to PTH were diminished by inhibitors of PI3K (wortmannin and LY-294002) and PKA (PKI 14–22). In conclusion, PTH requires NHE3 and basolateral K+ channels to induce HCO-3 and Cl- secretion, thus explaining how PTH regulated luminal pH balance and pH-dependent absorption of trace minerals.

Cite

CITATION STYLE

APA

Jantarajit, W., Lertsuwan, K., Teerapornpuntakit, J., Krishnamra, N., & Charoenphandhu, N. (2017). CFTR-mediated anion secretion across intestinal epithelium-like Caco-2 monolayer under PTH stimulation is dependent on intermediate conductance K+ channels. American Journal of Physiology - Cell Physiology, 313(1), C118–C129. https://doi.org/10.1152/ajpcell.00010.2017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free