Microglia activation visualization via fluorescence lifetime imaging microscopy of intrinsically fluorescent metabolic cofactors

  • Sagar M
  • Ouellette J
  • Cheng K
  • et al.
10Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Significance: A major obstacle to studying resident microglia has been their similarity to infiltrating immune cell types and the lack of unique protein markers for identifying the functional state. Given the role of microglia in all neural diseases and insults, accurate tools for detecting their function beyond morphologic alterations are necessary. Aims: We hypothesized that microglia would have unique metabolic fluxes in reduced nicotinamide adenine dinucleotide (NADH) that would be detectable by relative changes in fluorescence lifetime imaging microscopy (FLIM) parameters, allowing for identification of their activation status. Fluorescence lifetime of NADH has been previously demonstrated to show differences in metabolic fluxes. Approach: Here, we investigate the use of the label-free method of FLIM-based detection of the endogenous metabolic cofactor NADH to identify microglia and characterize their activation status. To test whether microglial activation would also confer a unique NADH lifetime signature, murine primary microglial cultures and adult mice were treated with lipopolysaccharide (LPS). Results: We found that LPS-induced microglia activation correlates with detected changes in NADH lifetime and its free-bound ratio. This indicates that NADH lifetime can be used to monitor microglia activation in a label-free fashion. Moreover, we found that there is an LPS dosedependent change associated with reactive microglia lifetime fluxes, which is also replicated over time after LPS treatment. Conclusion: We have demonstrated a label-free way of monitoring microglia activation via quantifying lifetime of endogenous metabolic coenzyme NADH. Upon LPS-induced activation, there is a significant change in the fluorescence lifetime following activation. Together, these results indicate that NADH FLIM approaches can be used as a method to characterize microglia activation state, both in vitro and ex vivo.

Cite

CITATION STYLE

APA

Sagar, M. A. K., Ouellette, J. N., Cheng, K. P., Williams, J. C., Watters, J. J., & Eliceiri, K. W. (2020). Microglia activation visualization via fluorescence lifetime imaging microscopy of intrinsically fluorescent metabolic cofactors. Neurophotonics, 7(03), 1. https://doi.org/10.1117/1.nph.7.3.035003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free