Personalized question routing via heterogeneous network embedding

51Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

Question Routing (QR) on Community-based Question Answering (CQA) websites aims at recommending answerers that have high probabilities of providing the “accepted answers” to new questions. The existing question routing algorithms simply predict the ranking of users based on query content. As a consequence, the question raiser information is ignored. On the other hand, they lack learnable scoring functions to explicitly compute ranking scores. To tackle these challenges, we propose NeRank that (1) jointly learns representations of question content, question raiser, and question answerers by a heterogeneous information network embedding algorithm and a long short-term memory (LSTM) model. The embeddings of the three types of entities are unified in the same latent space, and (2) conducts question routing for personalized queries, i.e., queries with two entities (question content, question raiser), by a convolutional scoring function taking the learned embeddings of all three types of entities as input. Using the scores, NeRank routes new questions to high-ranking answerers that are skillfulness in the question domain and have similar backgrounds to the question raiser. Experimental results show that NeRank significantly outperforms competitive baseline question routing models that ignore the raiser information in three ranking metrics. In addition, NeRank is convergeable in several thousand iterations and insensitive to parameter changes, which prove its effectiveness, scalability, and robustness.

Cite

CITATION STYLE

APA

Li, Z., Jiang, J. Y., Sun, Y., & Wang, W. (2019). Personalized question routing via heterogeneous network embedding. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 192–199). AAAI Press. https://doi.org/10.1609/aaai.v33i01.3301192

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free