Silymarin inhibits glutamate release and prevents against kainic acid-induced excitotoxic injury in rats

27Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Silymarin, a polyphenoic flavonoid derived from the seeds of milk thistle (Silybum marianum), exhibits neuroprotective effects. In this study, we used a model of rat cerebrocortical synaptosomes to investigate whether silymarin affects the release of glutamate, an essential neurotransmitter involved in excitotoxicity. Its possible neuroprotective effect on a rat model of kainic acid (KA)-induced excitotoxicity was also investigated. In rat cortical synaptosomes, silymarin reduced glutamate release and calcium elevation evoked by the K+ channel blocker 4-aminopyridine but did not affect glutamate release caused by the Na+ channel activator veratridine or the synaptosomal membrane potential. Decreased glutamate release by silymarin was prevented by removal of extracellular calcium and blocking of N-and P/Q-type Ca2+ channel or extracellular signal-regulated kinase 1/2 (ERK1/2) but not by blocking of intracellular Ca2+ release. Immunoblotting assay results revealed that silymarin reduced 4-aminopyridine-induced phosphorylation of ERK1/2. Moreover, systemic treatment of rats with silymarin (50 or 100 mg/kg) 30 min before systemic KA (15 mg/kg) administration attenuated KA-induced seizures, glutamate concentration elevation, neuronal damage, glial activation, and heat shock protein 70 expression as well as upregulated KA-induced decrease in Akt phosphorylation in the rat hippocampus. Taken together, the present study demonstrated that silymarin depressed synaptosomal glutamate release by suppressing voltage-dependent Ca2+ entry and ERK1/2 activity and effectively prevented KA-induced in vivo excitotoxicity.

Cite

CITATION STYLE

APA

Lu, C. W., Lin, T. Y., Chiu, K. M., Lee, M. Y., Huang, J. H., & Wang, S. J. (2020). Silymarin inhibits glutamate release and prevents against kainic acid-induced excitotoxic injury in rats. Biomedicines, 8(11), 1–22. https://doi.org/10.3390/biomedicines8110486

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free