LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Protein phosphorylation is a crucial post-translational modification that plays an important role in the regulation of cellular signaling processes. Site-specific quantitation of phosphorylation levels can help decipher the physiological functions of phosphorylation modifications under diverse physiological statuses. However, quantitative analysis of protein phosphorylation degrees is still a challenging task due to its dynamic nature and the lack of an internal standard simultaneously available for the samples differently prepared for various phosphorylation extents. In this study, stable-isotope dimethyl labeling coupled with phosphatase dephosphorylation (DM + deP) was tried to determine the site-specific degrees of phosphorylation in proteins. Firstly, quantitation accuracy of the (DM + deP) approach was confirmed using synthetic peptides of various simulated phosphorylation degrees. Afterwards, it was applied to evaluate the phosphorylation stoichiometry of milk caseins. The phosphorylation degree of Ser130 on α-S1-casein was also validated by absolute quantification with the corresponding synthetic phosphorylated and nonphosphorylated peptides under a selected reaction monitoring (SRM) mode. Moreover, this (DM + deP) method was used to detect the phosphorylation degree change of Ser82 on the Hsp27 protein of HepG2 cells caused by tert-butyl hydroperoxide (t-BHP) treatment. The results showed that the absolute phosphorylation degree obtained from the (DM + deP) approach was comparable with the relative quantitation resulting from stable-isotope dimethyl labeling coupled with TiO2 enrichment. This study suggested that the (DM + deP) approach is promising for absolute quantification of site-specific degrees of phosphorylation in proteins, and it may provide more convincing information than the relative quantification method.

Cite

CITATION STYLE

APA

Chen, S. H., Lin, Y. C., Shih, M. K., Wang, L. F., Liu, S. S., & Hsu, J. L. (2020). LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation. Molecules, 25(22). https://doi.org/10.3390/MOLECULES25225316

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free