A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate

176Citations
Citations of this article
106Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Prehydrolyzate, which is from the prehydrolysis process in dissolving pulps industry, contains various sugar-derived and lignin compounds such as xylooligosaccharides (XOS), gluco-oligosaccharides, xylose, glucose, and soluble lignin (S-L). The XOS has several beneficial effects on human physiology. XOS and S-L in prehydrolyzate are difficult to efficiently fractionate due to their similar molecular weights and water solubility. In this work, we proposed a sustainable and green process using polystyrene divinylbenzene (PS-DVB) resin to simultaneously separate and recover XOS and S-L. Enzymatic hydrolysis with endo-1,4-β-xylanase and fermentation with P. stipites were sequentially applied to purify XOS to minimize xylose content as well as amplify contents of xylobiose and xylotriose. In addition, 2D-HSQC NMR was used to analyze the structural characteristics of XOS and S-L. Furthermore, the biological abilities of antioxidants and prebiotics of these fractions were investigated by scavenging radicals and cultivating intestinally beneficial bacterias, respectively. Results: Results showed that PS-DVB resin could simultaneously separate XOS and solubilized lignin with excellent yields of 93.2% and 85.3%, respectively. The obtained XOS after being purified by enzymatic hydrolysis and fermentation contained 57.7% of xylobiose and xylotriose. 10.4% amount of inherent xylan was found in the S-L fraction obtained by PS-DVB resin separation. 2D-HSQC NMR revealed that lignin carbohydrate complexes existed in both XOS and S-L as covalent linkages between lignin and 4-O-methylglucuronoarabinoxylan. The biological application results showed that the antioxidant capacity of S-L was stronger than XOS, while XOS was superior in promoting growth of intestinal Bifidobacteria adolescentis and stimulating production of short-chain fatty acids by Lactobacillus acidophilus. Conclusions: The proposed strategy of sequentially combining hydrophobic resin separation, enzymatic hydrolysis, and fermentation was successfully demonstrated and resulted in simultaneous production of high-quality XOS and solubilized lignin. These biomass-derived products in prehydrolyzate can be regarded as value-adding prebiotics and antioxidants.

Cite

CITATION STYLE

APA

Huang, C., Wang, X., Liang, C., Jiang, X., Yang, G., Xu, J., & Yong, Q. (2019). A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnology for Biofuels, 12(1). https://doi.org/10.1186/s13068-019-1527-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free