Atmospheric turbulent structures and fire sweeps during shrub fires and implications for flaming zone behaviour

9Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Background. Wildfires propagate through vegetation exhibiting complex spread patterns modulated by ambient atmospheric wind turbulence. Wind gusts at the fire-front extend and intensify flames causing direct convective heating towards unburnt fuels resulting in rapid acceleration of spread. Aims. To characterise ambient and fire turbulence over gorse shrub and explore how this contributes to fire behaviour. Methods. Six experimental burns were carried out in Rakaia, New Zealand under varying meteorological conditions. The ignition process ensured a fire-line propagating through dense gorse bush (1 m high). Two 30-m sonic anemometer towers measured turbulent wind velocity at six different levels above the ground. Visible imagery was captured by cameras mounted on uncrewed aerial vehicles at 200 m AGL. Key results. Using wavelet decomposition, we identified different turbulent time scales that varied between 1 and 128 s relative to height above vegetation. Quadrant analysis identified statistical distributions of atmospheric sweeps (downbursts of turbulence towards vegetation) with sustained events emanating from above the vegetation canopy and impinging at the surface with time scales up to 10 s. Conclusions. Image velocimetry enabled tracking of ‘fire sweeps’ and characterised for the first time their lifetime and dynamics in comparison with overlying atmospheric turbulent structures. Implications. This methodology can provide a comprehensive toolkit when investigating coupled atmosphere–fire interactions.

Cite

CITATION STYLE

APA

Katurji, M., Noonan, B., Zhang, J., Valencia, A., Shumacher, B., Kerr, J., … Zawar-Reza, P. (2022). Atmospheric turbulent structures and fire sweeps during shrub fires and implications for flaming zone behaviour. International Journal of Wildland Fire, 32(1), 43–55. https://doi.org/10.1071/WF22100

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free