Modeling cell adhesion and extravasation in microvascular system

4Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The blood flow behaviors in the microvessels determine the transport modes and further affect the metastasis of circulating tumor cells (CTCs). Much biochemical and biological efforts have been made on CTC metastasis; however, precise experimental measurement and accurate theoretical prediction on its mechanical mechanism are limited. To complement these, numerical modeling of a CTC extravasation from the blood circulation, including the steps of adhesion and transmigration, is discussed in this chapter. The results demonstrate that CTCs prefer to adhere at the positive curvature of curved microvessels, which is attributed to the positive wall shear stress/gradient. Then, the effects of particulate nature of blood on CTC adhesion are investigated and are found to be significant in the microvessels. Furthermore, the presence of red blood cell (RBC) aggregates is also found to promote the CTC adhesion by providing an additional wall-directed force. Finally, a single cell passing through a narrow slit, mimicking CTC transmigration, was examined under the effects of cell deformability. It showed that the cell shape and surface area increase play a more important role than the cell elasticity in cell transit across the narrow slit.

Cite

CITATION STYLE

APA

Xiao, L. L., Yan, W. W., Liu, Y., Chen, S., & Fu, B. M. (2018). Modeling cell adhesion and extravasation in microvascular system. In Advances in Experimental Medicine and Biology (Vol. 1097, pp. 219–234). Springer New York LLC. https://doi.org/10.1007/978-3-319-96445-4_12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free