Efficient production of (S)-1-phenyl-1,2-ethanediol using xylan as co-substrate by a coupled multi-enzyme Escherichia coli system

9Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: (S)-1-phenyl-1,2-ethanediol is an important chiral intermediate in the synthesis of liquid crystals and chiral biphosphines. (S)-carbonyl reductase II from Candida parapsilosis catalyzes the conversion of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with NADPH as a cofactor. Glucose dehydrogenase with a Ala258Phe mutation is able to catalyze the oxidation of xylose with concomitant reduction of NADP+ to NADPH, while endo-β-1,4-xylanase 2 catalyzes the conversion of xylan to xylose. In the present work, the Ala258Phe glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 were introduced into the (S)-carbonyl reductase II-mediated chiral pathway to strengthen cofactor regeneration by using xylan as a naturally abundant co-substrate. Results: We constructed several coupled multi-enzyme systems by introducing (S)-carbonyl reductase II, the A258F glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 into Escherichia coli. Different strains were produced by altering the location of the encoding genes on the plasmid. Only recombinant E. coli/pET-G-S-2 expressed all three enzymes, and this strain produced (S)-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone as a substrate and xylan as a co-substrate. The optical purity was 100% and the yield was 98.3% (6 g/L 2-HAP) under optimal conditions of 35 °C, pH 6.5 and a 2:1 substrate-co-substrate ratio. The introduction of A258F glucose dehydrogenase and endo-β-1,4-xylanase 2 into the (S)-carbonyl reductase II-mediated chiral pathway caused a 54.6% increase in yield, and simultaneously reduced the reaction time from 48 to 28 h. Conclusions: This study demonstrates efficient chiral synthesis using a pentose as a co-substrate to enhance cofactor regeneration. This provides a new approach for enantiomeric catalysis through the inclusion of naturally abundant materials.

Cite

CITATION STYLE

APA

Rao, J., Zhang, R., Xu, G., Li, L., & Xu, Y. (2020). Efficient production of (S)-1-phenyl-1,2-ethanediol using xylan as co-substrate by a coupled multi-enzyme Escherichia coli system. Microbial Cell Factories, 19(1). https://doi.org/10.1186/s12934-020-01344-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free