Bacteria tolerant to organic solvents

308Citations
Citations of this article
230Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The toxic effects that organic solvents have on whole cells is an important drawback in the application of these solvents in environmental biotechnology and in the production of fine chemicals by whole-cell biotransformations. Hydrophobic organic solvents, such as toluene, are toxic for living organisms because they accumulate in and disrupt cell membranes. The toxicity of a compound correlates with the logarithm of its partition coefficient with octanol and water (log P(ow)). Substances with a log P(ow) value between 1 and 5 are, in general, toxic for whole cells. However, in recent years different bacterial strains have been isolated and characterized that can adapt to the presence of organic solvents. These strains grow in the presence of a second phase of solvents previously believed to be lethal. Different mechanisms contributing to the solvent tolerance of these strains have been found. Alterations in the composition of the cytoplasmic and outer membrane have been described. These adaptations suppress the effects of the solvents on the membrane stability or limit the rate of diffusion into the membrane. Furthermore, changes in the rate of the biosynthesis of the phospholipids were reported to accelerate repair processes. In addition to these adaptation mechanisms compensating the toxic effect of the organic solvents, mechanisms do exist that actively decrease the amount of the toxic solvent in the cells. An efflux system actively decreasing the amount of solvents in the cell has been described recently. We review here the current knowledge about exceptional strains that can grow in the presence of toxic solvents and the mechanisms responsible for their survival.

Cite

CITATION STYLE

APA

Isken, S., & De Bont, J. A. M. (1998, August). Bacteria tolerant to organic solvents. Extremophiles. https://doi.org/10.1007/s007920050065

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free