The activation of NF-κB consists of at least three steps: degradation of IκBα, translocation of NF-κB into the nucleus, and post-translational modification of NF-κB (e.g., phosphorylation of p65). In the present study, we found that a novel quinone derivative E3330 selectively inhibited NF-κB-mediated gene expression without affecting any of these steps. E3330, when included in the culture medium, suppressed NF-κB DNA-binding activity in PMA-induced Jurkat cell nuclear extracts, suggesting that the inhibition by E3330 of NF-κB-mediated gene expression was due to its ability to suppress NF-κB DNA-binding activity. Fractionation of the nuclear extracts by column chromatography revealed that a nuclear factor enhanced NF-κB DNA-binding activity and that this enhancing activity was interrupted after treatment with E3330. Moreover, a major polypeptide with a molecular mass of 40 kDa was found to be in the highly purified fraction containing the NF-κB-enhancing activity and predominantly bind E3330. Taken together, these results suggest that the NF-κB activity, after dissociation from IκB, is enhanced by a nuclear factor that is active irrespective of PMA treatment, and the nuclear factor-mediated enhancement is selectively inhibited by E3330. Thus, we conclude that E3330 may belong to a novel class of anti-NF-κB drugs.
CITATION STYLE
Hiramoto, M., Shimizu, N., Sugimoto, K., Tang, J., Kawakami, Y., Ito, M., … Handa, H. (1998). Nuclear Targeted Suppression of NF-κB Activity by the Novel Quinone Derivative E3330. The Journal of Immunology, 160(2), 810–819. https://doi.org/10.4049/jimmunol.160.2.810
Mendeley helps you to discover research relevant for your work.