Robust optimization - Methodology and applications

1.0kCitations
Citations of this article
692Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Robust Optimization (RO) is a modeling methodology, combined with computational tools, to process optimization problems in which the data are uncertain and is only known to belong to some uncertainty set. The paper surveys the main results of RO as applied to uncertain linear, conic quadratic and semidefinite programming. For these cases, computationally tractable robust counterparts of uncertain problems are explicitly obtained, or good approximations of these counterparts are proposed, making RO a useful tool for real-world applications. We discuss some of these applications, specifically: antenna design, truss topology design and stability analysis/synthesis in uncertain dynamic systems. We also describe a case study of 90 LPs from the NETLIB collection. The study reveals that the feasibility properties of the usual solutions of real world LPs can be severely affected by small perturbations of the data and that the RO methodology can be successfully used to overcome this phenomenon.

Cite

CITATION STYLE

APA

Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization - Methodology and applications. Mathematical Programming, Series B, 92(3), 453–480. https://doi.org/10.1007/s101070100286

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free