Beyond zircon: Incorporating detrital feldspar pb isotope analysis into the multiproxy toolbox for sedimentary provenance analysis—an example from a long-lived eastern laurentian clastic system

1Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The common- Pb isotope composition (107Pb/104Pb vs.106Pb/104Pb) of detrital K-feldspar was measured on the same clastic units from southeastern Laurentia that were previously characterized by detrital zircon and detrital monazite geochronology for provenance analysis. The purpose is to test a model that invokes late Paleozoic recycling of sediment initially sourced from erosion of exhuming Grenvillian basement in the Neoproterozoic. The approach takes advantage of the difference in Pb isotope compositions between Laurentian and Amazonian cratonic sources documented by previous workers. Neoproterozoic samples sourced from southern Amazonia and central Laurentian basement that serve as controls on methodology plot within Pb isotope space characteristic of their respective sources. K-feldspar in the Cryogenian Ocoee Supergroup in the southern Appalachian orogen falls within the field of Pb isotope compositions defined by south-central Appalachian basement (SCAB). The latter, in turn, exhibits Pb isotope compositions characteristic of Amazonia, because SCAB was transferred to Laurentia from Amazonia during Rodinian assembly. In contrast, K-feldspar in early Cambrian arenite falls within the Laurentian field, indicating a shift in the early Paleozoic to a sediment source from the Laurentian Craton. K-feldspar in Lower Pennsylvanian lithic arenites of the Central Appalachian Basin exhibit Pb isotope compositions that fall within the SCAB field but at higher Pb isotope ratios than in the inferred Ocoee sources. Incorporation of all provenance constraints requires an immediate source that is isotopically more radiogenic than the Ocoee but similar in all other petrologic and geochronologic characteristics, for example, other Cryogenian to Ediacaran units along strike in the Appalachian orogen. The results further demonstrate the importance of having multiple detrital mineral proxies for accurate provenance analysis rather than using detrital zircon geochronology alone.

Cite

CITATION STYLE

APA

Moecher, D. P., Badenszki, E., Daly, J. S., & Chew, D. (2022). Beyond zircon: Incorporating detrital feldspar pb isotope analysis into the multiproxy toolbox for sedimentary provenance analysis—an example from a long-lived eastern laurentian clastic system. Journal of Geology, 130(6), 429–445. https://doi.org/10.1086/724287

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free